Mitigating greenhouse gases – Agriculture's role

Johan Six Adam Wolf

Plant Sciences
UCDavis

Funded by PIER

Sources and sinks in agriculture

CO_2

Sources: Fossil fuels, biomass burning, soil degradation

Sinks: Buildup soil organic matter and plant biomass

GWP (Global Warming Potential) = 1

N_2O

Sources: Fertilizer, crop residues, manure

Sinks: No agricultural sinks

 $GWP = \sim 300$

CH_4

Sources: Livestock, manure, anaerobic soils (rice)

Sinks: Aerobic soils, especially forests and grasslands

 $GWP = \sim 20$

California

Source: California Energy Commission

Practices for C sequestration

- Reduced and zero tillage
- Set-asides/conversions to perennial grass
- Reduction in cultivated organic soils
- Winter cover crops
- More hay in crop rotations

Practices for N₂O & CH₄ emission reduction

N₂O mitigation

- •Better match of N supply to crop demand
- •Better organic N (e.g. manure) recycling
- •Advanced fertilizers (e.g. controlled release, nitrification inhibitor)

CH₄ mitigation

- •Improved livestock breeding and reproduction
- •Nutrition (e.g. forage quality, nutrient balance, additives)
- Manure composting
- •Rice (water and nutrient management)

Part of the solution

One of the wedges is best management practices in agriculture

Integrated modeling approach

Yield Calibration

Based 3 long-term field experiments

SAFS LTRAS 5Pts

SOC Calibration

N₂O Calibration

Field 74

Greenhouse gas budget: Five Points

- Reduced tillage can cut fuel-CO₂ emissions by half
- Integration of reduced tillage with cover cropping!

SOC		tCO ₂ e ha ⁻¹			
		STNO	STCC	CTNO	CTCC
	Cotton	-0.11	-2.42	-0.92	-4.20
	Tomato	-0.65	-2.53	-0.87	-3.71
N_2O	297				
_	Cotton	1.62	1.04	1.33	0.80
	Tomato	1.69	1.63	1.36	1.17
CH ₄	31				
	Cotton	-0.11	-0.12	-0.11	-0.11
	Tomato	-0.11	-0.11	-0.11	-0.11
Fuel-C	· •				
	Cotton	0.51	0.57	0.25	0.27
	Tomato	0.63	0.85	0.30	0.34
SUM					
	Cotton	1.91	-0.93	0.54	-3.25
	Tomato	1.56	-0.17	0.68	-2.31
	system	1.73	-0.55	0.61	-2.78

Sustainable Agricultural Farming Systems Project

SUM		Conventional	Low Input
	Bean	2.55	4.02
	Corn	-0.06	-0.83
	Saf	0.83	-1.16
	Tom	3.46	2.32
	system	1.69	1.09

Long Term Research Agricultural Systems Project

SUM	Conventional		Low Input	Organic
	Corn	6.54	2.23	1.59
	Tomato	4.46	2.54	-1.28
	system	5.50	2.39	0.15

Low Input and Organic have quite some potential for mitigation!

Implementation

Economics

Cost to Mitigate

Five Points	STNO -> STCC	\$35
	STNO -> CTNO	\$0
	STNO -> CTCC	\$35
SAFS	Conv -> Low Input	\$18
LTRAS	Conv -> Low Input	\$22
	Conv -> Organic	\$0

European Market: \$34/tCO₂e

Ancillary benefits of GHG mitigation

C sequestering practices

- Reduced erosion
- •Improved soil quality and fertility
- •Improved water quality
- •Conservation Reserve lands Wildlife habitat and biodiversity
- Biofuel production

N₂O emissions reductions

- •Reduced leaching and ammonia volatilization
- •Improved water quality (well nitrate, hypoxia, algae blooms)
- •Less fertilizer waste

CH₄ emission reductions

•Improved water and air quality (manure handling, odors, runoff)

Conclusions

• Cover cropping, low input, reduced tillage and organic seem to have potential in California.

What about manure, compost, drip irrigation and set-aside?

• Fuel C and N₂O are major player in greenhouse gas budgets; especially in California

But measurements and modeling issues with N_2O

Conclusions

• Use of improved management practices show a significant technical potential for GHG mitigation, but agriculture is **only part** of the solution.

• Bundling' GHG mitigation with other environmental goals should increase benefit and cost-efficiency of agricultural GHG policies.

Issues

- Measurement and monitoring costs
 - Transaction costs?
- 'Temporary' carbon storage who assumes the liability?

 $N_2O \rightarrow no issue$

- Long-term contracts
- Leasing
- Additionality
 - Credit for 'early' adopters?

Table 1. Potential wedges: Strategies available to reduce the carbon emission rate in 2054 by 1 GtC/year or to reduce carbon emissions from 2004 to 2054 by 25 GtC.

Option	Effort by 2054 for one wedge, relative to 14 GtC/year BAU	Comments, issues	
	Energy efficiency and conservation		
Economy-wide carbon-intensity reduction (emissions/\$GDP)	Increase reduction by additional 0.15% per year (e.g., increase U.S. goal of 1.96% reduction per year to 2.11% per year)	Can be tuned by carbon policy	
1. Efficient vehicles	Increase fuel economy for 2 billion cars from 30 to 60 mpg	Car size, power	
2. Reduced use of vehicles	Decrease car travel for 2 billion 30-mpg cars from 10,000 to 5000 miles per year	Urban design, mass transit, telecommuting	
3. Efficient buildings	Cut carbon emissions by one-fourth in buildings and appliances projected for 2054	Weak incentives	
4. Efficient baseload coal plants	Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today)	Advanced high-temperature materials	
	Fuel shift		
 Gas baseload power for coal baseload power 	Replace 1400 GW 50%-efficient coal plants with gas plants (four times the current production of gas-based power) CO ₂ Capture and Storage (CCS)	Competing demands for natural gas	
 Capture CO₂ at baseload power plant 	Introduce CCS at 800 GW coal or 1600 GW natural gas (compared with 1060 GW coal in 1999)	Technology already in use for H ₂ production	
7. Capture CO ₂ at H ₂ plant	Introduce CCS at plants producing 250 MtH ₂ /year from coal or 500 MtH ₂ /year from natural gas (compared with 40 MtH ₂ /year today from all sources)	H ₂ safety, infrastructure	
 Capture CO₂ at coal-to-synfuels plant 	Introduce CCS at synfuels plants producing 30 million barrels a day from coal (200 times Sasol), if half of feedstock carbon is available for capture	Increased CO ₂ emissions, if synfuels are produced without CCS	
Geological storage	Create 3500 Sleipners	Durable storage, successful permitting	
	Nuclear fission		
9. Nuclear power for coal power	Add 700 GW (twice the current capacity) Renewable electricity and fuels	Nuclear proliferation, terrorism, waste	
10. Wind power for coal power	Add 2 million 1-MW-peak windmills (50 times the current capacity) "occupying" 30 $ imes$ 10 ⁶ ha, on land or offshore	Multiple uses of land because windmills are widely spaced	
11. PV power for coal power	Add 2000 GW-peak PV (700 times the current capacity) on 2 $ imes$ 10 6 ha	PV production cost	
 Wind H₂ in fuel-cell car for gasoline in hybrid car 	Add 4 million 1-MW-peak windmills (100 times the current capacity)	H ₂ safety, infrastructure	
13. Biomass fuel for fossil fuel	Add 100 times the current Brazil or U.S. ethanol production, with the use of 250 × 10 ⁶ ha (one-sixth of world cropland) Forests and agricultural soils	Biodiversity, competing land use	
 Reduced deforestation, plus reforestation, afforestation, and new plantations. 	Decrease tropical deforestation to zero instead of 0.5 GtC/year, and establish 300 Mha of new tree plantations (twice the current rate)	Land demands of agriculture, benefits to biodiversity from reduced deforestation	
15. Conservation tillage	Apply to all cropland (10 times the current usage)	Reversibility, verification	

Slide courtesy Robertson

Anthropic Sources of Methane and Nitrous Oxide Globally

Total Impact 2.0 Pg C_{equiv}

1.2 Pg C_{equiv}

(compare to fossil fuel CO_2 loading = 3.3 Pg C per year) (compare to soil C sequestration of 0.3-0.5 Pg C per year)

IPCC 2001; Robertson 2004

N₂O - Yield Threshold

US Trading Initiatives and Activities

- Chicago Climate Exchange
- National Carbon Offset Coalition
- Commodity brokerage firms
 - Natsource
 - Cantor Fitzgerald
- Consultants
- NGOs
- State Initiatives

Chicago Climate Exchange

